
java.sun.com/javaone/sf

|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone1

The Java Sound 
Internet Phone

Florian Bomers
Sun Microsystems, Inc.

Matthias Pfisterer
itservices pfisterer



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone2

Overall Presentation Goal 

Learn how to build a simple Voice over IP 
(VoIP) application with Java. 
Explore how to leverage new features in 
J2SE 5.0.

Simple VoIP with Java



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone3

Speaker Introduction

• Florian Bomers is leading Java Sound development at 
Sun Microsystems

• Matthias Pfisterer is an independent contractor mainly 
for Java technology-based projects

• Both have been programming with the Java Sound API 
since its very beginning

• They lead the Tritonus project – an open source 
implementation of the Java Sound API, and plugins.

• They founded the jsresources.org project (Java Sound 
Resources): open source FAQs, examples, 
applications.

• Today's application is available at jsresources.org



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone4

Agenda

Demo
General Architecture and program details
New Tiger Features
Problems and Solutions
Future Enhancements
Your Questions



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone5

Demo
The Java Sound Internet Phone 
in Action!



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone6

General Architecture

• Uses a simple TCP connection
• Not well suited:
─ delay, jitter
─ overhead

• But very simple: InputStream, 
OutputStream

• Connection class is abstract; UDP connection 
fits into architecture

Network I



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone7

General Architecture

• The active side initiates the connection
• The listener (passive side) accepts connection
• The active side sends a small header with 

magic, protocol version, audio format code
• The passive side responds with ACK
• From then on, only direct audio 

Network II



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone8

General Architecture

• Network format:
─ possibly compressed
─ choice of GSM, phone, FM, CD quality

• Line format:
─ the format that the soundcard is opened
─ usually only PCM

• use AudioSystem.getAudioInputStream 
to convert network audio format to line format

• use new Direct Audio devices for high 
performance

Audio I: general



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone9

General Architecture

• Use SourceDataLine for streaming playback
• receives audio data from network in an AudioInputStream
• converted PCM stream is read in a thread and 

written to the SourceDataLine
• use SourceDataLine's buffer size for reading 

and writing

Audio II: playback

PlaybackNetwork AIS
GSM

AudioSystem
AIS
PCM



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone10

General Architecture

• Use TargetDataLine for streaming capture
• The TargetDataLine is wrapped in an 
AudioInputStream so that it can be 
converted to the network format with AudioSystem

• a capture thread reads from the converted 
AudioInputStream and writes it to the 
network connection's OutputStream

Audio III: capture

NetworkCapture AIS
PCM

AudioSystem
AIS
GSM



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone11

General Architecture

• User can choose the Mixer for capture and for 
playback

• User can choose the Port to capture from:
─ a list of all Ports
─ a volume slider

• User can change the volume of an arbitrary 
Port:
─ a list of all Ports
─ a volume slider
─ does not select which output port is used for 

playback!

Audio IV: Mixers, Ports



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone12

New Tiger Features

• Select input port on soundcard
• Adjust volume for input and output ports
─ gain, pan, mute, select

• Partial implementation available in J2SDK 1.4.2
• Since JDK 1.5: available on all platforms

Ports



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone13

New Tiger Features

• New, additional set of Mixers
• “direct” access to the soundcard
─ access to all soundcards
─ low latency (small buffers) possible

• implementation for Linux available in J2SDK 
1.4.2

• Since JDK 1.5: available on all platforms
• Requires ALSA on Linux, DirectSound 5 on 

Windows, and mixer on Solaris

Direct Audio



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone14

New Tiger Features

• Specify system default device for 
SourceDataLine, TargetDataLine, ... 
in jre/lib/sound/properties file:

# use ALSA plughw:1 device as default SourceDataLine
javax.sound.sampled.SourceDataLine=#AudioPCI [plughw:1,0]

• Use new convenience methods:
// retrieve the default SourceDataLine 
// with a given format:
SourceDataLine line=AudioSystem.getSourceDataLine(format);

sound-properties -- default devices



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone15

New Tiger Features

• Static import:
import static org.jsresources.apps.chat.Constants.*;

• Generics:
List<String> portNames = new List<String>();

• Autoboxing:
List<Integer> controlIndex = new List<Integer>();
controlIndex.add(10); // <=> add(new Integer(10))

• Enhanced For:
List<String> getMixerNames(List<Mixer> mixers) {
  List<String> res = new ArrayList<String>();
  for (Mixer m: mixers) {
    res.add(m.getMixerInfo().getName());
  }
  return res;
}

New Language Features



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone16

Problems and Solutions: Audio

• Problem: now we can access all Ports on the 
system, but which Port really selects, e.g., the 
microphone?

• Which port will adjust the volume for the 
selected Mixer and SourceDataLine?

➔ Java Sound does not give access to this 
connection.

➔ In our application, we present the user a list of 
all Ports, and she/he needs to pick the correct 
one to be able to adjust the gain/volume.

Port assignments



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone17

Problems and Solutions: Audio

• Many ports per soundcard, flexible 
configurations possible!

Create a list of all Ports

Mixer
“Delta66 [hw:0]”

Mixer
“AudioPCI [hw:1]”

Source Port
“Microphone”

Source Port
“Line In”

Source Port
“CD”

Target Port
“Aux”

Target Port
“Speaker”

CompoundControl
“Microphone”

CompoundControl
“Line In”

CompoundControl
“Wave”

FloatControl
“Master”

BoolControl
“Mute”

FloatControl
“Volume”

BooleanControl
“Select”

FloatControl
“Volume”

BooleanControl
“Mute”

FloatControl
“Pan”



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone18

Problems and Solutions: Audio

➔ Solution: use the fact that all volume and select 
controls will reside in a CompoundControl. 
Only use top-level CompoundControls:

Create a list of all Ports

void addPortControls(List<String> portNames,
                     Mixer mixer, Port port) {
  port.open(); // need to open port to access Controls!
  Control[] controls = port.getControls();
  for (Control c: controls) // enhanced “for” with arrays
    if (c instanceof CompoundControl)
      portNames.add(mixer.getMixerInfo().getName()
                    +": "+c.getType().toString());
}

Delta66 [hw:0]: Microphone
Delta66 [hw:0]: Line In
AudioPCI [hw:1]: Microphone
AudioPCI [hw:1]: Wave
...



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone19

Problems and Solutions: Audio

• In order to find out the minimum buffer size (i.e. 
minimize latency), we want to change the buffer 
size while audio is playing

• But buffer size is specified when opening the 
Line!

➔ Close the Line, and re-open it with the new 
buffer size.

➔ Not nice, but unavoidable. API should be 
enhanced to allow buffer changes while Line is 
open.

➔ Analogous for changing the current Mixer.

Changing Buffer Size while line is running



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone20

Problems and Solutions: Audio

• We wanted to provide a test mode: microphone 
is enabled and everything that is captured is 
played on the speakers

➔ Easy with the stream architecture:
Use the capture AudioInputStream (which 
reads from the TargetDataLine) as input for 
the Playback class.

➔ The Playback class will “think” that the stream 
comes from the network.

Test Mode for Microphone

AIS
PCM

AS
AIS
GSM

Capture AS
AIS
PCM

Playback



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone21

Problems and Solutions: Audio

• We want to display the current level of the 
microphone and of the speaker

• DataLine has a method: getLevel() which 
is not implemented!

➔ Need to calculate the current level on our own
➔ for each buffer that is read from the 
TargetDataLine, calculate the maximum 
value and store as current level

➔ in a separate thread, display the current level in 
a JProgressBar every 50 milliseconds

Level Meter



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone22

Problems and Solutions: Audio
Level Meter: Code, 8-bit
protected void calcCurrVol(byte[] b, int off, int len) {
  int end = off+len;
  int sampleSize = (lineFormat.getSampleSizeInBits() + 7) / 8;
  int max = 0;
  if (sampleSize == 1) {
    // 8-bit
    for ( ; off < end; off++) {
      int sample = (byte) (b[off] + 128);
      if (sample < 0) sample = -sample;
      if (sample > max) max = sample;
    }
    lastLevel = max;
  } else if (sampleSize == 2) {
    ...16-bit next slide...
  }
}



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone23

Problems and Solutions: Audio
Level Meter: Code, 16-bit
  ... 16-bit:
  if (lineFormat.isBigEndian()) {
    // 16-bit big endian
    for ( ; off < end; off+=2) {
      int sample = (short) ((b[off]<<8) | (b[off+1] & 0xFF));
      if (sample < 0) sample = -sample;
      if (sample > max) max = sample;
    }
  } else {
    // 16-bit little endian
    for ( ; off < end; off+=2) {
      int sample = (short) ((b[off+1]<<8) | (b[off] & 0xFF));
      if (sample < 0) sample = -sample;
      if (sample > max) max = sample;
    }
  }
  // scale down to 0..127
  lastLevel = max >> 8;



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone24

Problems and Solutions: Audio

• We want to provide a mute button -- may need 
to cover up “private” noises :)

• Could use Port's mute or Volume controls
─ but are we sure that it's the right port?

➔ Implement a soft-mute: just zero the buffer if 
muted

➔ this way we're absolutely sure that it is really 
muted

“Mute” button



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone25

Problems and Solutions: Audio
“Mute” button: Code
... capture code:
  int ret = line.read(b, off, len);
  if (isMuted()) {
    muteBuffer(b, off, ret);
  }
...
protected void muteBuffer(byte[] b, int off, int len) {
  int end = off+len;
  int sampleSize = (lineFormat.getSampleSizeInBits() + 7) / 8;
  byte filler = 0;
  if (sampleSize == lineFormat.getChannels()) {
    // 8-bit has -128 as silence
    filler = -128;
  }
  for ( ; off < end; off++) {
    b[off] = filler;
  }
}



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone26

Problems and Solutions: Network

• Calling read() on a Socket's InputStream 
may return less bytes than requested

• Solution: DataInputStream.readFully()

Incomplete read()

Socket sock = ...;
InputStream inStream = sock.getInputStream();
byte buffer = new byte[4];
// may read any between 0 and 4 bytes
inStream.read(buffer);
// guaranteed to read 4 bytes
DataInputStream dataInStream =
        new DataInputStream(inStream);
dataInStream.read(buffer);



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone27

Problems and Solutions: Network

• Original round-trip delay: 1,5 seconds
─ Delay end-to-end (one direction): about 750 ms

• Solution: set send buffer size and receive buffer 
size for sockets

• With 1024 bytes: delay barely noticable
• Size in bytes should depend on audio format

TCP latency

void setSocketOptions(Socket sock) {
  sock.setNoDelay(false);  // delayed ACK improves
                           // performance
  sock.setSendBufferSize(1024);
  sock.setReceiveBufferSize(1024);
}



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone28

Problems and Solutions: Network

• “Active” side: plain Socket
─ Initiates connection

• “Passive” side: ServerSocket
─ Waits for incoming connections

Connection detection

ServerSocket servSock = new ServerSocket(PORT);
void listen() {
  commSock = servSock.accept(); // blocks until conn. attempt
  setSocketOptions(commSock);
}

Socket commSock; // communication socket
void connect(INetAddress addr) {
  commSock = new Socket(addr, PORT); // tries to connect
  setSocketOptions(commSock);
}



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone29

Problems and Solutions: Network

• One side closes its communication socket to 
initiate a disconnect

• The peer detects it by receiving exceptions 
when reading from or writing to the socket
─ Not yet implemented cleanly

Disconnect detection



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone30

Problems and Solutions: Network

• Only one process can listen for connections on 
a specific port numer
─ Two instances need to use different port numbers

• Solution: port number as configuration option

Two users on the same machine



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone31

Summary

You have learned...
• ...how to build a simple VoIP application in pure 

Java
• ...how to use Tiger's new language and sound 

features
• ...about some limitations in Java Sound
• ...some tips and tricks how to overcome 

common problems



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone32

For More Information

• Demo application and downloads:
http://www.jsresources.org/apps/chat/

• Tritonus (incl. download of GSM plug-in):
http://www.tritonus.org

• Florian.Bomers@sun.com
• Matthias.Pfisterer@web.de



|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone33

Q&A



java.sun.com/javaone/sf

|   2004 JavaOneSM Conference   |   Session 3196: The Java Sound Internet  Phone34

Florian Bomers
Sun Microsystems, Inc.

Matthias Pfisterer
itservices pfisterer

The Java Sound 
Internet Phone


